Lycée Bennene Bodheur A.S: 2015 / 2016	DEVOIR DE CONTROLE N 1
	Epreuve: Mathématiques
	Durée: 2 H Coefficient : 3
Prof: Mr MBARKI SABRI	Section: Sciences Expérimentales

Exercice 1: (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est correcte. L'élève doit indiquer sur sa copie, <u>avec justification</u>, le numéro de la question et la lettre convenable à la réponse choisie.

Une réponse correcte et justifiée vaut 0.75 point, une réponse correcte et non justifiée vaut 0.25 point et une réponse fausse ou l'absence de réponse vaut 0 point.

1) Soit f la fonction définie sur
$$\mathbb{R}^*$$
 par : $f(x) = x^2(1 - \sin\frac{1}{x^2})$. Alors $\lim_{x \to 0} f(x) = 1$

- a) +∞
- b) 0

c) 1

2) 1+i est une racine quatrième de :

a) -4

b) 4

c) 4i

3) Si $arg(z) \equiv \frac{\pi}{6} [2\pi]$ alors $arg(i\bar{z}) \equiv$

- a) $\frac{\pi}{6} [2\pi]$
- b) $\frac{\pi}{6}$ [2 π]
- c) $\frac{\pi}{3} [2\pi]$
- 4) L'équation $z^2 = (\bar{z})^2$ admet dans \mathbb{C}
 - a) Une seule racine b) deux racines distincts c) une infinité de racines

Exercice 2: (6 points)

Soit la fonction f définie sur [-2, $+\infty$ [par : $f(x) = x-1 + \sqrt{x+2}$.

- 1) a) Montrer que f est continue sur $[-2, +\infty[$.
 - b) montrer que f est strictement croissante sur $[-2, +\infty[$.
- 2) a) Montrer que l'équation f(x) = 0 admet dans]-1, 0[une unique solution α .
 - b) Donner un encadrement de α a 10^{-2} près.
- 3) donner le signe de f(x) sur [-1, 0].
- 4) a) Montrer que : α^2 3 α 1 = 0
 - b) En déduire la valeur exacte de α .

5) Calculer
$$\lim_{x \to +\infty} f\left(x^2(1-\cos\frac{\pi}{x})\right)$$
 et $\lim_{x \to 1} f\left(\frac{\cos\frac{\pi}{2}x}{x-1}\right)$

Exercice 3: (7 points)

On considère dans \mathbb{C} l'équation (E) : $\mathbb{Z}^2 - (\sqrt{3} + 3i)\mathbb{Z} - 2 + 2i\sqrt{3} = 0$

- 1) a) Vérifier que : $(-\sqrt{3} + i)^2 = 2 2i\sqrt{3}$
 - b) Résoudre l'équation (E)
- 2) Pour tout Z dans \mathbb{C} , on pose $p(Z) = Z^3 (\sqrt{3} + 5i)Z^2 4(2 i\sqrt{3})Z + 4(\sqrt{3} + i)$
 - a) Calculer p(2i)
 - b) Trouver les nombres complexes α et β tel que : pour tout Z dans $\mathbb C$ on a $p(Z)=(Z-2i)(Z^2+\alpha Z+\beta)$
 - c) Résoudre l'équation p(Z) = 0
- 3) Le plan complexe muni d'un repère orthonormé direct (o, \vec{u}, \vec{v}) . On considère les points A, B et C d'affixes respectives a = 2i, $b = \sqrt{3} + i$ et $c = \sqrt{3} + 3i$
 - a) Donner l'écriture exponentielle de a et b. En déduire la construction des points A, B et C
 - b) Donner l'écriture exponentielle de c et $\frac{c-a}{b-a}$.
 - c) En déduire que le triangle ABC est équilatéral.
- 4) a) Vérifier que : b = c a
 - b) en déduire que le quadrilatère OBCA est un losange.

Exercice 4: (4 points)

Soient Z_1 et Z_2 deux nombres complexes non nuls et non réels tels que : $Z_1 \times Z_2 = 1$ et $|Z_1 - Z_2| = 2$. Soit r le module de Z_1 et θ un argument de Z_1 . On suppose que $r \ge 1$ et $\theta \in [0; \frac{\pi}{2}]$. Le plan complexe muni d'un repère orthonormé direct (o, \vec{u}, \vec{v}) . Soient les points A, B, M_1 et M_2 d'affixes respectives -1, 1, Z_1 et Z_2

- 1) a) Donner l'écriture exponentielle de Z₂.
 - b) Montrer que : $|Z_1 Z_2|^2 = r^2 + \frac{1}{r^2} 2\cos 2\theta$
 - c) Déduire que : $r \frac{1}{r} = 2 \cos \theta$
- 2) Calculer les distances AM_2 et BM_1 .
- 3) Montrer que : $(AM_1) // (BM_2)$
- 4) Soit Δ une demi-droite d'origine O incluse dans le premier quadrant et M_1 un point de Δ . Déduire de ce qui précède une construction de M_2 .